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ABSTRACT 

We show that under very general conditions any inhomogeneous cosmological model 

with a positive cosmological constant, that can be described in a synchronous reference 

system will tend asymptotically in time towards the de Sitter solution. This is shown to be 

relevant in the context of inflationary models as it m&es inflation very weakly dependent 

on initial conditions. 
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It has been conjectured by Gibbons and Hawking’ and by Hawking and Moss2 that 

coamologies with a positive cosmological constant approach the de Sitter solution asymp 

totically in time; thii is the no called “no hair” conjecture. Several attempts at proving 

the coqjecture have been made3, and a general proof haa been obtained for homogeneous 

cosmologiea (Bianchi models).’ The range of validity of no hair theorems is of great im- 

portance in several areas of physics such as for example inflationary cosmologiea. In these 

one usually assumes that the universe becomes dominated by a positive vacuum energy, 

i.e. a cosmological constant A > 0, and for a period of time expande exponentially at 

the Hubble-rate H= 6. If the universe undergoes a period of exponential expansion of 

more than about sixty Hubble times it is possible to explain the cosmological horizon- and 

flatnes/oldnea puzzles in a natural ways. 

The purpose of this letter is to prove a very general version of the cosmic no hair 

theorem, and consider some of its immidiate implications. We shall show that a very large 

class of inhomogeneous and anisotropic cosmologiee tend to the de Sitter solution at large 

times. Thii implies that inflation becomes a generic feature of a large class of cosmologies 

provided with a positive cosmological constant. Initial conditions of these cosmologiea 

then becomes almost irrelevant since they all end up in the same asymptotical state, the 

de Sitter cosmology. 

We consider Einstein’s equations 

R ,w = T,w - ;g,vT - g,wA 0) 

Here grv is the space-time metric, T,,” the energy-momentum tensor, and T = T,“. We 

use the sign conventions (+, -, -, -) and the notation of ref.(6). Greek indices run from 0 

to 3 and Latin from 1 to 3. The only assumptions we make about the energy-momentum 

tensor is that it satisfies (i) the dominant energy condition, thii means that T,,,t*t” 2 0 

and T,,“t” is non spaceliie for all timelike t”, and (ii) the strong energy condition, that 
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(T,,” - ~gpvT)tW’ 2 0 for all timelike t @. The dominant energy condition is equivalent to 

demanding that the energy density is non-negative and the energy 50~ is causal. All known 

forms of matter satisfies this condition. (For a perfect fluid it reduces to p 2 lpi.) The 

strong energy condition for a perfect fluid reduces to the usual requirement that p + 3p 2 0, 

i.e. a large negative energy density or large negative pressures must be present to violate 

this condition. We choose to work in a synchronous reference system where gao = 1 and 

go” = 0. We shall also introduce a (positive definite) spatial metric tensor h,,b z -gab and 

define S&, = icob. Using this (1) becomes6 

R,0=-~6~-fs~J~=T,0-~T-A 

R,O = ;(s:;~ - &) = T,” 

Rt = -p, - -&+s~) = T.” - ;b:T - 6,6A 

Here P,b is the three dimensional Ricci tensor calculated using h,b and h = det bob. 

(\/ii can be interpreted as the volume element in three-space.) Let us define the volume 

expansion by K G +k/h = is:. In what follows we make the assumption that the space 

is open or 5at, i.e. that the scalar spatial curvature P = P,” is negative or zero. Eq. (2) 

then implies 

-@ = k + ~$s~ = -T, + ;T + A (3.1) 

-R:=k+K’+P=-T;+;T+3A (3.2) 

TO proceed and solve (2) we must first calculate sist. If we introduce the trace free 

part of a,+, 20,s E (3,b - $SEh,b), we 5nd that 

s;t$ = 3,bS ob = 53:)' +40,bOob = ;Ka +4b,bOab 

Substituting this into (3.1) we 5nd 

k = A - ;~a - ,,,bo~b - (T,o - ;T) (4) 
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Eliminating k using (3.2) this givea 

A - ;Ka = -&,b& -T;+; (5) 

cledy Umbuab is non negative and zero only when 0.b = 0. The strong and dominant 

energy conditions imply that e - +T and Too are positive, so from (4) and (5) we fmd 

k 5 A - ;KP = -U,bUob -T;+;<O 

Thii shows that Ka 2 3A. Also, after integration of the first inequality of (6) we find 

that K 2 a/tanh(&(r + t ( )) o z, , where to only depends on space. (Here we have 

chosen the positive square root so Ko = K(to) is positive corresponding to an expanding 

universe.) This implies that asymptotically 

0 5 K - &i 5 4&iL+fi(~+~0) 

From (6) it then follows that U&Uab, Too and -P a 11 are suppressed by the same exponential 

factor. This shows that the expansion rate K of the volume tends to the de Sitter rate of 

& and that o& = 0 asymptotically, i.e. 

This implies that asymptotically, h,,b(t,&) = eaeL&(zc), where k only depends on 

space. 

From the dominant energy condition it follows that for all timelike t” 

(To&“)’ L TdhabTbrt” 2 o (7) 

Choosing t” = 6’” this shows that 



Since TOO vanishes faster than hab this forces TO. to vanish asymptotically. Substituting this 

back into (7) we similarly 5nd that T.s vanishes asymptotically. Therefore asymptotically 

Einstein’s equations for Pob becomes 

P& = 0 (8) 

The only solution to this is flat Euclidean three-space, i.e. i-6 becomes equal to a (con- 

stant) Euclidean metric. This shows that in suitable coordinates the full space-time metric 

grv asymptotically becomes equal to the de Sitter metric 

g,,dz~dzY -+ dta _ e~~t(dZa)a 

In particular this applies to the case of homogeneous cosmologies, the Bianchi models. 

Except for Bianchi IX all these are 5at or open, so in the presence of a positive cosmological 

constant these will all approach de Sitter space, in agreement with previous results’. 

We also wish to point out that our argument holds in any number of dimensions 

(except that (8) does not imply that space is Euclidean when the space dimensions exceeds 

three). 

As we have mentioned in the beginning , the fact that such a large class of cosmologies 

under the in5uence of a positive cosmological constant tend to the de Sitter space-time 

has great importance for the in5ationary cosmology scenarios’. In these gravity is coupled 

to a massless scalar field r$ with a “flat” potential V(4). The cosmological constant is 

fine tuned so that the energy density vanishes at the minimum of V corresponding to the 

absence of a cosmological constant today. The equation of motion for 4 is 

4 + K$ = -V’(d) (9) 

where 4 is taken to be smooth so that we can neglegt gradient terms in (9), and K is given 

by (5). We notice that if P 5 0, then K is greater than the Hubble constant 6 of de 

5 



Sitter phase. Therefore the “friction force” felt by the field, K.$ is greater than in de Sitter 

phase making the 5eld roll slower over the potential; in the same token a greater K means 

faster expansion. We shall assume that initially 4 is stabilized (by for example initial 

conditions or thermal corrections) on the “5at” part of V. Then we 5nd that at least as 

much in5ation is produced in the general csse with the universe being inhomogeneous prior 

to in5ation than in the usual case with Friedmann-Robertson-Walker (FRW) cosmology 

prior to in5ation (similar arguments were used in ref.(8) for the anisotropic case). The 

resulting universe is highly homogeneous and isotropic on scales much larger than the 

horizon and after d has returned to its minimum it evolves like the usual FRW model, but 

without the extra assumption of initial homogeneity or isotropy. We should comment that 

there in no need to assume that P 5 0 in all of space, in order to have succesful inflation. 

We just need P 5 0 in some region large enough that surface effects can be neglected, then 

this region will eventually evolve into de Sitter space and may then become our observable 

universe. This strongly supports the belief that in5ation is a very universal feature largely 

independent of the initial conditions of the universe. 

We also pointed out above that our result is true in higher dimensions: under the 

conditions given above an (n + I)-dimensional cosmology under the in5uence of a positive 

cosmological constant will eventually expand at a rate of m in each of the n spatial 

directions, and space becomes “Ricci-5at”. Thii rules out inflation in Kaluza-Klein type 

theories in which P (the sum of the curvature of the internal space and three space) is 

negative, since eventually the internal dimensions will expand and become observable. (Al- 

though it may be possible to have P 5 0 if one is willing to violate the energy conditions.) 

We have shown that the “no hair conjecture” is true for a wide class of spatially open 

and fiat cosmological models. The only requirements is the existence of B synchronous 

reference frame, a positive cosmological constant and an energy momentum tensor that 

satisfies both the strong and dominant energy conditions. Furthermore we have argued 



that in the case where gravity is coupled to a homogeneous, maasless scalar field inflation 

is unavoidable. 

We would like to thank Mike Turner and Bob Wald for encouraging conversations and 

comments. This work was supported by the Department of Energy and NASA. 
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